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A family of brominated flame retardants
called the polybrominated diphenyl ethers
(PBDEs) has been increasing exponentially
over the past 25 years as contaminants in
breast milk samples from Sweden; their lev-
els have doubled every 5 years (Figure 1) (1).
PBDEs are now found as residues in sedi-
ments, wildlife (marine mammals, fish, and
bird eggs) and humans (milk, serum, and
adipose tissue). Lipophilic and metabolically
resistant, the PBDEs share many of the
properties that make them long-lived, bioac-
cumulating, environmental pollutants with
the organochlorine pesticides (e.g., DDT),
polychlorinated biphenyls (PCBs), and poly-
chlorinated dibenzo-p-dioxins and furans.
The increasing levels of PBDEs in breast
milk illustrate how breast-milk monitoring
programs (BMMPs) can act as warning sys-
tems and alert us to new forms of persistent
organic pollutants (POPs).

Once alerted, new questions arise. What
are the PBDEs? Where do they come from?
What concerns should we have over their pres-
ence in the environment or in breast milk

Briefly, PBDEs are flame-retardant addi-
tives in high-impact plastics, foams, and tex-
tiles (5-30% of these products by weight)
(2). They are structurally related to the
PCBs (Figure 2) and, like PCBs, are pro-
duced commercially as mixtures. However,
PBDE mixtures contain fewer congeners
than commercial PCB mixtures and enter
the environment in a different way. PCBs, in
general, enter the environment directly from
point sources (e.g., broken capacitors) as a
complete commercial dielectric mixture.
PBDE mixtures, in contrast, are noncova-
lently bound additives in plastics and textiles
that are selectively released over the prod-
ucts' lifetimes. What little is known of
PBDE toxicology resembles that of the PCBs.

Some of the persistent and bioaccumulative
PBDE congeners seem likely to cause cancer
and thyroid and/or neurodevelopmental toxi-
city, based on the available PBDE toxicology
data and on structure-activity relationships
with PCBs, polychlorinated diphenyl ethers
(PCDEs), and other compounds.

At present, residue levels of PBDEs in
biota are lower than (1/10-1/100th) levels of
PCBs. However, the exponential increase in
PBDEs found recently in breast milk may be
a harbinger of things to come: PBDEs may
be the PCBs of the future. PBDEs are an
excellent example of why BMMPs are need-
ed in the United States.

Polyhalogenated POPs
Polyhalogenated POPs are a superfamily of
compounds with long 2- to 10-year half-lives
[e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) has a half-life of 7.5 years] (3-6).
Members of this superfamily include the
PCDD/PCDFs, PCBs, PCDEs, and poly-
chlorinated naphthalenes (PCNs), as well as
the polybrominated biphenyls (PBBs) and
PBDEs (International Union of Pure and
Applied Chemistry no. 209) (Table 1). Each
subfamily consists of many congeners (Table
1) that share the subfamily's chemical back-
bone but with different numbers and positions
of halogen substituents (Figure 2). Not all of
the congeners in each subfamily are dassified
as POPs, i.e., are stable and persistent. For
example, only 17 of the 210 PCDDs/PCDFs
persist in humans. The polyhalogenated POP
superfamily also contains approximately 20 of
the organochlorine pesticides.

POPs have three chemical characteristics
that make them intrinsically hazardous: they
are stable (persistent), they are fat-seeking, and
they have the potential to act as endocrine
disruptors. The stability and lipophilicity of

POPs causes them to biomagnify up the food
chain, increasing in concentration at each
successively higher trophic level. Once poly-
halogenated POPs are released into the envi-
ronment, they invariably find their way into
the mother, where they pass transplacentally
to the developing fetus or through the breast
milk to the nursing infant.

Some POPs can bind to receptors and act
in a hormonelike manner to cause biologic
effects at low doses. For example, the 2,3,7,8-
substituted PCDDs/PCDFs, PCNs, and
coplanar PCBs bind as ligands to a cytoplas-
mic hormone-receptor-like molecule called
the aryl hydrocarbon (Ah) receptor. This Ah
receptor ligand-bound complex migrates from
the cytoplasm into the nucleus and alters the
expression of genes coding for different
metabolizing enzymes (e.g., cytochrome
P450s). Other POPs such as the PBDEs have
the potential to bind to the Ah or other recep-
tors and act via hormonelike mechanisms.

Recent studies indicate that a number of
polychlorinated POPs are endocrine disrup-
tors. Several have estrogen-like activities,
whereas others, the dioxin-like POPs, have
antiestrogenic activities (7-10). Health effects
as diverse as shortened duration oflactation in
mothers (11) and neurodevelopmental
cognitive-motor deficits and intellectual
impairment in children (12-17) have been
attributed to polyhalogenated POPs. For
PCDDs/PCDFs, contaminant levels in breast
milk (18-21) and human health effects
(19,22-24) have recendy been reviewed. For
TCDD, there are a plethora of health effects
(7,25), ranging from chloracne to cancer (19)
and altered sex ratio (26).

POPs have shorter half-lives in rodents
than in humans (e.g., TCDD half-life in
rodents is 10-20 days and in humans is 5-10
years). After corrections are made for species
differences in residence times, human expo-
sures to TCDD are closer to the dose levels
that produce effects in animal studies (27).
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Ironically, it is the fetus and the nursing
infant that receive significant exposures or the
greatest body burdens of environmental
POPs. As evidence of fetal exposures, the
infant at birth has levels ofTCDD that are up
to 25% of maternal levels (28-31), and in
utero exposures to background levels of some
POPs are associated with adverse effects [e.g.,
cognitive-motor deficits (12,13,15-17)].
Breast-fed infants are effectively at the top of
the food chain. Their daily intake ofTCDD,
for example, is typically 50-fold higher than
that of adults, on a body weight basis
(32-34), and they absorb 90% of the ingested
TCDD (35).

This level of uptake of polyhalogenated
POPs by the fetus and the nursing infant rais-
es concerns about the potential for adverse
health outcomes. POP body burdens may
adversely affect reproduction in the mother or
adversely affect the development of the fetus,
infant, or child, exposed either in utero and/or
via breast-feeding (11-17,25,26). Prenatal,
and not lactational, exposures appear to be
important sources of some of the adverse
health effects of POPs seen in infants [e.g.,
cognitive-motor deficits from PCBs (12)].
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Figure 1. Organohalogen compounds in human
milk in Sweden. Abbreviations: PCDD, polychlori-
nated dibenzo-p-dioxin; PCDF, polychlorinated
dibenzofuran; PCB, polychlorinated biphenyl; TEQ,
toxic equivalent. Adapted from Noren and
Mieronyte ( 1).
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ethers and structurally related compounds.
Abbreviations: hexa-BB, hexabromobiphenyl;
penta-BDE, pentabromodiphenyl ether; TCDD,
tetrachlorodibenzo-p-dioxin.

There is also evidence that breast-fed infants,
even at the highest background exposures,
fare better than nonbreast-fed infants with
comparable exposure in cognitive and motor
development (15,36). Thus, breast-feeding
continues to be considered beneficial to the
infant, although careful studies of longer
term outcomes (e.g., cancer) from ingesting
contaminants in breast milk have not been
conducted. Thus, at present, POP contami-
nants in breast milk are useful as markers of
maternal body burdens as well as lactational
and in utero exposures.

BMMPs
Breast-milk monitoring is a convenient non-
invasive means of estimating body burdens
of polyhalogenated POPs in the mother,
fetus, and breast-fed infant or child. POPs
enter humans chiefly as contaminants in ani-
mal-derived food (fish, poultry, beef, eggs,
and dairy products). Once ingested, POPs
sequester in body lipids, where they equili-
brate at roughly similar levels on a fat-weight
basis between adipose tissue, serum, and
breast milk. POP contaminants in breast
milk increase with maternal age [e.g.,
TCDD (18,37,38)] and decrease with the
number and duration of lactation periods
(e.g., TCDD levels in breast milk decrease
roughly 25% after each successive breast-fed
child) (18,39,40).

BMMPs have many uses. They provide
data on baseline body burdens for women
during the perinatal period and, with the use
of breast milk consumption data, provide
estimates of POP levels in infants and chil-
dren. BMMPs identify hot spots of POP
contamination, and congener patterns can
help to identify the sources of the POP cont-
aminants. BMMPs identify at-risk popula-
tions of mothers, infants, and children for
follow-up health outcome studies. Using
time-trend data, BMMPs can also identify
new POPs of emerging concern, and can
assess the effectiveness of regulatory strategies
to limit exposures to POPs (e.g., pollution
prevention or hazardous waste management).
Thus, time-trend data from the Swedish
BMMP, as reported by Noren et al. (Figure
1), identified PBDEs as a growing concern.
The Swedish data also demonstrated a 70%
decrease in PCDD/PCDF/PCB body bur-
dens over the past 25 years (1), presumably as
a result of effective regulatory actions.

Breast milk and adipose tissue, like sedi-
ments in rivers or lakes, act as storehouses of
POPs. POP levels in breast milk, as with sedi-
ments, reflect past environmental conditions.
BMMP data complement monitoring data
from air, water, soil, or food.

BMMPs have operated in several coun-
tries (Sweden, Germany, The Netherlands,
and New Zealand) over the last 20-30 years,

and have helped to identify PCBs and
PBDEs as important human contaminants.
Standardized collection and analytical proto-
cols (41) now exist for analyzing many POPs
in breast milk. Currently, there is no system-
atic monitoring of breast milk contamina-
tion in the United States, and little is known
of PBDE breast milk levels or body burdens
in the United States.

PBDEs
As with other POPs, PBDEs are transferred
via breast milk from the mother to the off-
spring. Evidence of this transfer comes from
pilot whales. Juvenile pilot whales, which
subsist primarily on mother's milk, had 2- to
3-fold higher levels of 19 PBDE congeners
(tetra- to hexa-BDE: 3 vs. 1 ppm) than
adults (42).

Identity, use, and production. The
PBDEs are structurally similar to the PCBs
and PBBs (Figure 2), with the same nomen-
clature and number (209) of congeners.
Since the 1960s, PBDEs have been added as
flame-retardants to thermoplastics (e.g.,
high-impact polystyrene) that are used in
electrical appliances, TV sets, computer cir-
cuit boards and casings, and building materi-
als. PBDEs are also found in foams and
upholstery in home and business furnish-
ings; in interiors in cars, buses, trucks, and
airplanes; and in rug and drapery textiles
(2,43). Some manufacturers have begun to
reduce PBDE levels in products (e.g., com-
puter monitors) to earn the Swedish TC099
environmental label.

Three major commercial mixtures of
PBDEs are produced: deca-BDEs (mostly
deca-BDE with some nona- and octa-BDE
congeners), octa-BDEs (mostly hepta- and
octa-BDE congeners), and penta-BDEs
(mostly penta- and tetra-BDE congeners).
Fully brominated deca-BDE is the major
product, accounting for 75% of the PBDE
production. The commercial PBDEs gener-
ally contain fewer (< 10) congeners than do
commercial PCB mixtures (e.g., roughly 80
congeners in the Aroclor 1254 or 1260 mix-
tures). Worldwide PBDE production is esti-
mated at roughly 80 million pounds per year
(2). In the United States, commercial penta-,
octa-, and deca-BDE were each produced or
imported at greater than one million pounds
per year in 1990, 1994, and 1998 (44).

Environmentalfate. PBDEs are likely to
be more susceptible to environmental degra-
dation than PCBs because bromine is a bet-
ter "leaving group" than chlorine; i.e., the
carbon-bromine bond is weaker than the
carbon-chlorine bond. Thus, whereas PCBs
were used as thermally resistant dielectrics,
PBDEs are used as flame retardants because
they are somewhat thermally labile, and
break down with heat to release bromine
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radicals that quench the radical cascade of
the combustion and fire-spreading processes.

The environmental fates of the PBDEs
are not well documented. Most of the ana-
lytical methods used at present detect only
the lower molecular weight (MW) (< 800
MW) tetra- to hepta-BDE congeners, and
the fates of the higher MW (octa- to deca-
BDE) congeners and the major commercial
mixture (deca-BDE) are unclear.

The fate of deca-BDE in the environ-
ment needs further study. Even though the
deca-BDE has lower bioaccumulative poten-
tial (43) and lower biologic activity (45) than
the lower PBDE congeners, it is still a source
of public health concern. Away from sun-
light, deca-BDE likely persists in soils and
sediments. In sunlight, the deca-BDE readily
degrades to the lower brominated congeners
(e.g., tetra- to hexa-BDEs) (43,46,4), which
themselves readily bioaccumulate [the tetra-
and penta-BDE bioaccumulate almost as well
as the PCBs (48,49)]. Currently, it is undear
what proportion of the tetra- to hexa-BDEs
in the environment are breakdown products
of the deca-BDE congener and what propor-
tion comes from the commercial penta-BDE
mixtures.

Tissue levels: humans. Although PBDEs
have been measured in humans, animals, and
environmental samples for some years (2), the
exponential increase of tetra- to hexa-BDEs in
Swedish breast milk has galvanized interest. In
the Noren study (Figure 1), milk samples
were pooled from native Swedes living in the
Stockholm region, with the proportion of
primiparae (55-65%) and the average age of
donors kept reasonably constant (1).
Numbers of mothers in the pools varied from

75 to 116 during 1972-1985 and from 20 to
40 during 1990-1997 (50). 2,2',4,4'-tetra-
BDE was the major congener (60-70%), and
it was present at approximately 2.3 ng/g lipid
in 1997 (1,51). Another recent Swedish
breast milk study found wide interindividual
variability in PBDEs levels from 39 first-time
mothers (1.1-28.2 ng/g fat), with mean levels
similar to those reported in the pooled sam-
ples in the Noren study (52).

The predominant congeners in human
tissues are the three ortho-para-(2,4-) substi-
tuted congeners: 2,2',4,4'-tetra-BDE
(PBDE-47); 2,2',4,4',5-penta-BDE (PBDE-
99); and 2,2',4,4',5,5'-hexa-BDE (PBDE-
153). These were present in recent human
adipose tissue samples from Sweden at levels
ranging from 0.3 to 98.2 ng/g lipid (53,54).
Similar levels of the tetra- to hexa-BDEs were
found in adipose tissue samples from Spain
(55), Israel (56), and the United States (57).
This raises the possibility that exponential
increases in PBDEs are occurring worldwide.

In the few studies that have measured
deca-BDE in environmental samples, deca-
BDE is less prevalent in biota than the lower
brominated congeners. PBDE congener pat-
terns in humans may provide information on
the nature or pathway of the PBDE expo-
sures, much in the manner of the DDE:DDT
ratio. Low tetra:deca BDE ratios suggest
direct, recent, or occupational exposures to
the parent product. Higher ratios may indi-
cate an environmental pathway, where expo-
sures stem from PBDEs that have leached
from commercial products and that have been
degraded in the environment.

Deca-BDE levels in human samples may
be more likely to arise from direct exposures.

For example, whereas breast milk samples
had high tetra:deca-BDE ratios, serum sam-
ples from dismantlers at an electronics-recy-
cling plant had low tetra:deca-BDE ratios
(58). The levels of five PBDE congeners,
including deca-BDE, in the serum taken
from the dismanders were significantly high-
er than levels in samples taken from clerks in
the same plant or from a control group of
hospital cleaners. Thus, deca-BDE, even
with its high MW, is bioavailable.

Tissue levels: animals. PBDE levels have
been measured in marine and terrestrial life.
These analyses have primarily been conduct-
ed on samples taken from the North Atlantic
Ocean and from Northern Europe. The pre-
dominant congeners are the tetra- to hexa-
BDEs. Levels of PBDEs on a nanogram
per gram lipid basis include: cod liver
(3-170), herring (100), trout (100-170), eel
(14,000-17,000), pike (27,000), guillemot
egg (2,000), osprey (0.16-19,000), cor-
morant liver (28,000), seal blubber
(2.6-1,470), sperm whale (79-136), pilot
whale (843-3,160), reindeer (0.5), and
moose (1.7) (2,53,59,60-65).

Current levels ofPCBs or DDTs are con-
siderably higher (10- to 500-fold) than PBDE
levels. For example, levels of PCBs or DDTs
(in nanogram per gram lipid) in Northern
Europe were roughly 10-fold higher than
PBDEs in herring, 300- to 400-fold higher
in grey seals, and approximately 40-fold
higher in osprey (63). However, if the trends
in contaminant levels in human milk (Figure
1) and the environment continue, PBDEs
will replace PCBs/DDTs as the major
environmental POP over the next 15-30
years.

Table 1. PBDEs and other polyhalogenated POPs.
Propertes Toxicity

Congeners Use Commercial mixtures Half-life, Half-life. Human Ah Cancer, Neuro-
Chemical class, in class (functional (no. congeners rodent human body burden, receptor animal develop-
specific congeners (n) property) in product) (days) (years) pg/g lipid, (TEQ) actity or human mental Thyroid
PCDDs/PCOFs 75/135 Contaminants NA 1-60. 2-10 (20) +1+ +1+ +1+ +1+

*.... ^ ¢ ' -. s\;$. '.5 . , :. .A
PCBs 209 Dielectrics e.g., Aroclor 6-28 2-6 1,500,000(20) + + + +

, 7 .7''' (thsi.iV: :r" 7 ~. :7+' 7;*" t..

Mono-orfho-PCB stable) (> 40) + + +

PBBs 209 Flame retardant .g., Firemastor 160-8 81 .50,000 + +
.0~~ .... .....

Deca-BBc
P3_Es 7, ,~<,;: ':.9,. j,,,. ^C pens. .i^- -
Penta-(PCDE-99) 6 2,000-8,000

PBDEs -209 Flame retardant .- 1,000-100,000 + + +

Penta.-(PBDE-99)6 Penta-<(10)- 25-47 + + +

.~~~ .... ... ...

Deca-BDEc Octa- +

X; 'S 'b ye f~.i PW..

.. ... .......~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 .....

Abbreviations: Ah, aryl hydrocarbon; NA, not applicable; TEO., toxic equivalency. +, positive study;-, negative study; +/.-;marginally positve. GaAs left blank indicate no data.
Exmples of major congeners commonly found in human tissues. Monsanto Corpora ion, St. Louis, MO. MUost-produced congener of class. tommercial grade pants-ODE was posi-

tie (primarily contains PBDE-47, -99, and -153). 1Fha short half-life of deca-BDE is likely due to a very low (- 0.3%) rate of absorption. However, adipose tissue bromine levels in rats fed
deca-ODE remained unchanged for 90 days after cessation of exposure (reviewed in (2)1, indicating a long terminal half-life.
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Little is known of environmental levels
of PBDEs in the United States. PBDE levels
(di- to hepta-BDE) in whole homogenates of
Lake Ontario trout were between 200 and
300 pg/g lipid (66). Recent PBDE levels in
the muscle tissue of other Great Lakes fish
averaged 3,000 ng/g lipid (the sum of six
prominent congeners) (67).

Toxicology. PBDEs have some structural
similarities to the PCBs and PBBs, the
DDT family, the herbicide nitrofen, the
PCDDs/PCDFs, and thyroxine (T4) (Figure
2), and they appear to share some toxicolog-
ic properties as well. The available data sug-
gest that the lower (tetra- to hexa-) PBDE
congeners are likely to be carcinogens,
endocrine disruptors, and/or neurodevelop-
mental toxicants.

Deca-BDE, the major commercial prod-
uct, is expected to be one of the least active
congeners because of its poorer bioavailability.
Likely due to its high MW, deca-BDE is
poorly absorbed by ingestion (approximately
0.3%) and is rapidly eliminated in rodents
(half-life < 1 day) (68). This contrasts with
the lower brominated congeners, which are
almost completely absorbed and have half-
lives in rodents that are comparable to or
longer than TCDD (20-30 days for a tetra-
BDE or 45-119 days for two hexa-BDEs in
rats) (69,70). Activities of several enzymes
induced by a commercial penta-BDE mixture
in rats remained significantly elevated for
30-60 days after the last exposure, again sug-
gesting long half-lives for the lower brominat-
ed congeners (45,71). Because the half-lives of
these congeners in rodents are comparable to
that ofTCDD (69), the lower PBDEs are also
likely to persist in humans.

Among commercial PBDE mixtures, those
containing lower congeners are stronger induc-
ers of liver enzymes in rats [i.e., penta-BDE >
octa-BDE > deca-BDE (45,71)]. This is simi-
lar to the relative activities of the structurally
related PBBs, where the lower congeners are
generally more active. For the PBDEs, the
greater activities of the lower congeners may be
due to their greater bioavailability or to their
higher affinities for receptor proteins.

Cancer. Human data on PBDE carcino-
genicity are limited. One study cited an asso-
ciation between adipose tissue levels of
PBDE-47 and the risk of non-Hodgkin lym-
phoma (NHL) among Swedish hospital
patients (54). Other studies cited similar
associations for PCB levels and the risk of
NHL (72), and for PBB levels and the risk
oflymphoma and breast cancer (73,74).

In animals, only the fully brominated and
poorly absorbed (0.3%) deca-BDE has been
tested for carcinogenicity in long-term studies
(68,75). In mice, results from the National
Toxicology Program bioassay (68) were
marginally positive. Deca-BDE produced

statistically significant increases in hepatocel-
lular adenomas and carcinomas (combined)
in male mice, but the increases were within
the range of historical controls. Marginal
increases in thyroid gland follicular cell ade-
nomas or carcinomas (combined) were
observed for male and female mice. PCBs
and dioxin-like compounds disrupt thyroid
hormone balance.

Stronger effects of deca-BDE were seen
in rats, with significant dose-related increases
in liver neoplastic nodules (adenomas) in
both males and females. An earlier bioassay
in rats, using fewer animals and much lower
doses of deca-BDE, found no statistically
significant increases in tumors (75), as might
be expected. Liver tumors were the primary
tumors observed in rodent cancer bioassays
of PCBs and PBBs, which are structurally
related to the PBDEs.

Evidence for Ah receptor mechanism.
Although PBDEs have not been tested for
their ability to bind to the Ah receptor, mech-
anistic studies indicate that some PBDE
congeners exhibit significant Ah receptor-
mediated (e.g., dioxin-like) effects, with
penta-DBE activity greater than tetra-DBE
activity. In rats for example, commercial-
grade penta-BDE was a more powerful induc-
er of ethoxyresorufin-o-deethylase (EROD)
activity, a standard assay for dioxin-like com-
pounds, than commercial PCBs (Aroclor
1254). The penta-BDE mixture was active at
lower levels (3 mg/kg) than the model induc-
ers, 3-methylcholanthrene, or most PCB mix-
tures (69). In mice, commercial penta-BDE
induced EROD activities and suppressed the
immune response, which are consistent with
Ah receptor-mediated effects (76).

PBDE-47, the major congener in human
and marine tissues, also induced EROD activ-
ities in rats (6 mg/kg for 2 weeks), albeit less
powerfully than PCBs (Aroclor 1254) (77).
The tetra-BDE has less dioxin-like activity
than the commercial penta-BDE product
[comparing the results ofvon Meyerinck et al.
(69) and Hallgren and Darnerud (77)].

Ah receptor-mediated activities of PBDEs
also have been investigated using the rat
hepatoma cell line H-4-II E. A commercial
formulation of penta-BDE induced EROD
levels in the H4-II E cells with an estimated
potency of one-millionth that ofTCDD (78).
In a study of 17 specific PBDE congeners, 7
congeners acted as Ah-recep-tor agonists and
9 congeners acted as antagonists when co-
treated with TCDD (79). The potencies of
the agonists were comparable to the potencies
ofsome mono-ortho PCBs (79).

The PCDEs similarly induce EROD,
also with penta activity greater than tetra
activity (80,81). These observations agree
with molecular modeling predictions of the
interactions between PCDEs and the Ah

receptor, where chlorines in the ortho
positions are predicted to enhance binding to
the receptor of the more highly chlorinated
PCDEs (82). Thus, the enzyme induction
data and modeling predictions for the PCDEs
support the Ah receptor-mediated activity of
the PBDEs.

Additional evidence for PBDE dioxin-
like activity comes from the induction of
EROD by coadministration of tetra-BDE
and PCBs (Aroclor 1254). The effects of
PBDE and PCBs were additive, suggesting
that the two POP families operate through
similar mechanisms (77).

Genotoxicity. The genotoxicity profiles
of PBDEs and PCBs are similar. As with the
commercial PCB mixtures, the deca-, octa-,
and penta-BDE commercial mixtures were
not mutagenic in Salmonella typhimurium
(2,68,83). As with two technical mixtures of
PCBs, two PBDE technical mixtures of
mono- or di-BDEs induced genetic recombi-
nation in two mammalian cell lines, whereas
the tetra-BDE mixture was positive in one
cell line (84). In recent metabolic studies of
[14C]PBDE-47 in rats and mice, tetra-BDE
was covalently bound to macromolecules in
various tissues, with evidence for a reactive
epoxide intermediate (70).

Endocrine ffects. The lower PBDEs dis-
rupt thyroid hormone balance. In rats, com-
mercial-grade penta-BDE (2, 10, or 200
mg/kg/day for 90 days) reduced thyroid hor-
mone levels and increased incidences of thy-
roid hyperplasia, with effects at all dose levels
(83). In mice, the penta-BDE also significant-
ly reduced T4 levels 8 days after a single expo-
sure and at the lowest dose tested (0.8 mg/kg)
(76). PBDE-47, the major congener in
human and animal tissues, reduced thyroid
hormone levels in female rats at a dose of
18 mg/kg (77). The effects of tetra-BDE in
reducing levels of thyroid hormones were
additive with coadministered PCBs (Aroclor
1254) or chlorinated paraffins (77).

Higher PBDE congeners also have the
potential to disrupt thyroid hormone balance.
Deca-BDE produced statistically significant
increases in the incidences of thyroid hyper-
plasia and marginal increases in the incidences
of tumors of the thyroid among male and
female mice in 2-year feeding studies (68).
Commercial octa-BDE administered to rats
for 90 days resulted in thyroid changes (2).
Also, 4 of 35 production workers in a deca-
BDE and deca-BB manufacturing plant man-
ifested dinical hypothyroidism, with one case
reportedly exposed only to deca-BDE. No
cases of thyroid dysfunction were observed
among 89 age- and sex-matched unexposed
workers (85).

Studies of the structurally related PCDEs
offer some supporting evidence that PBDEs
disrupt thyroid hormone balance. Three
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specific congeners (2',3,4,6'-tetra-CDE;
2,2',4,5,6'-penta-CDE; and 2,2',4,4',5,5'-
hexa-CDE) administered to pregnant rats
resulted in reductions of T4 levels in dams
and in offspring exposed in utero (86).

The mechanism of PBDE-induced thy-
roid hormone disruption is undear. PBDEs
may induce UDP-glucuronosyltransferases,
which increases the rate of T4 conjugation
and excretion. Alternatively, PBDEs or their
hydroxy metabolites may mimic T4 or T3
because these hormones are hydroxy-halo-
genated diphenyl ethers (Figure 2). This
mechanism is supported by observations
from metabolic studies of tetra-BDE, in
which hydroxy-tetra-BDE metabolites were
found (70). Hydroxy-PBDEs (as with
hydroxy-PCBs) may reduce T4 levels by
competing with T4 for the thyroid hormone
transport protein, transthyretin (86).

Developmental toxicity. Neurodevelop-
mental toxicity has been reported for a tetra-
BDE congener, PBDE-47, and a penta-BDE
congener, PBDE-99, the major congeners in
human tissues. PBDE-47 (0.7 mg) and
PBDE-99 (10.5 mg) administered to mice on
postnatal day 10 resulted in permanent aberra-
tions in motor behavior that worsened with
age. Neonatal exposure to PBDE 99 also
reduced learning and memory in adult mice
(874. Similar effects occurred in mice that were
neonatally exposed to some of the ortho-substi-
tuted PCBs and coplanar PCBs (8).

Commercial formulations of penta-, octa-,
and deca-BDEs give equivocal results in devel-
opmental studies. Although increases in
embryo mortality and delayed skeletal forma-
tion were observed, these effects were accom-
panied by maternal toxicity in all of the
studies except one (with octa-BDE) (2,4a).

Structurally related compounds, induding
PCDEs, nitrofen, and PCB/PBBs, cause
developmental effects. A penta- and a tetra-
CDE decreased the number of litters born, the
perinatal growth, and pup survival in mice
when administered from gestational days 6-15
(88). Nitrodiphenyl ethers, induding the her-
bicide nitrofen (2,4-dichlorophenyl-4'-nitro-
phenyl ether) caused pronounced perinatal
and postnatal toxicity, which are believed to
be thyroid hormone-mediated outcomes
[reviewed by Rosiak et al. (88)]. Moreover,
PCBs and PBBs are well recognized as devel-
opmental toxicants (89). In mechanistic and
structure-activity studies, the di- to penta-
CDE congeners showed greater activity than
ortho-PCBs in perturbing Ca2+ neuronal
homeostasis and other effects associated with
ortho-PCB neurobehavioral toxicity (90).

Conclusion
The observation of rising levels of PBDEs in
Swedish breast milk illustrates how BMMPs
can serve tO warn us of new or unrec-ognized

POPs. The BMMP time-trend data have
spurred research in the last year on the occur-
rence and toxicity of PBDEs. Monitoring
programs are needed to determine PBDE lev-
els in U.S. populations. In addition, BMMPs
are needed in the United States to fill data
gaps for other POPs, especially for
PCDDs/PCDFs and PCBs. No BMMPs
exist to monitor PBDE levels or time trends
in the United States.

PBDE toxicology is incomplete. Eco-
logic, neurodevelopment, and thyroid func-
tion studies and 2-year rodent cancer
bioassays are needed for some congeners,
including PBDE-47 and the commercial for-
mulations of penta- and octa-BDEs. Even in
the absence of further studies, however, it
seems dear that less toxic alternatives to per-
sistent PBDE flame retardants are desirable,
given the suggestive parallels between PBDE
and PCB toxicology.

Several studies found that prenatal, and
not lactational, exposures to polyhalogenated
POPs were critical for childhood cognitive-
motor deficits. If this is true, the health of
the fetus and the infant can be protected
only by limiting in utero exposures to POPs,
which can be accomplished only by limiting
the mother's exposures. Given the prodivity
of POP compounds to persist, seek out fat,
and biomagnify up the food chain, it is hard
to see how the mother's exposures can be
limited except by broad preventative strate-
gies (e.g., replacing POPs with biodegrad-
able or environmentally friendly alternatives)
(34). Concentrations of POPs in breast milk
serve as markers for in utero and lactational
exposures. In conjunction with BMMPs,
these markers will allow us to assess POP
body burdens and monitor the progress of
our preventative strategies.
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